
2015 Conference	This work is supported by the ESGF consortium: DOE, NASA, NOAA, IS-ENES, NCI. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Parallelizing the Climate Data Management System, version 3 (CDMS)

The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional,
gridded data used in climate analyses for data observation and simulation. The basic unit of computation in CDMS is the variable, which
consist of a multidimensional array that represents climate information in four dimensions corresponding to: time, pressure levels,
latitudes, and longitudes. As models become more precise in their computation, the volume of data generated becomes bigger and
difficult to handle due to the limit of computational resources. Models today produce data at a time frequency as much as hourly and
spatial resolution as fine as in satellite observations. As the amount of data grows, so does the time needed for scientists to analyze the
data and retrieve useful information. The process threatens to become unmanageable. We can ease the burden of working with big data
sets by parallelizing CDMS. Multiple approaches are possible. The most obvious one is embarrassingly parallel or pleasingly parallel
programming where each computer node processes one file at a time. A more challenging approach is to send a piece of the data to each
node for computation and each node will save the results at its right place in a file as a slab of data. This is possible with Hierarchical
Data Format 5 (HDF5) using the Message Passing Interface (MPI). A final approach would be the use of Open Multi-Processing API
(OpenMP) where a master thread is split in multiple threads for different sections of the main code. Each method has its advantages and
disadvantages. This poster brings to light each benefit of these methods and seeks to find an optimal solution to compute climate data
analyses in an efficient fashion using one or a mixtures of these parallelized methods.	

Denis Nadeau1, Dean Williams1, Jeff Painter1, Charles Doutriaux1
1 Lawrence Livermore National Laboratory

Workflow

For Additional Information

Nadeau1@LLNL.gov
Williams13@LLNL.gov

GMAO	MERRA	(Rienecker	et	al.	2011)	•  Who:	Undertaken	by	NASA’s	Global	Modeling	and	Assimila;on	Office.	
•  What:	Two	primary	objec;ves	to	put	NASA’s	Earth	Observing	System	satellite	

data	into	a	climate	context,	and	improve	on	earlier	genera;on	reanalyses	
modeling	of	hydrologic	cycle.++	

•  When:	Years	of	record	from	1979/01	–	2013/01.	
•  Where:	NASA	Goddard	Space	Flight	Center,	Greenbelt,	Maryland.	
•  Size:	~200	TB	data	format	NET	CDF	/	HDF	

ECMWF	ERA-Interim	(Dee	et	al.	2011)	•  Who:	European	Centre	for	Medium-Range	Weather	Forecasts	(ECMWF).	
•  What:	Two	primary	objec;ves	were	to	improve	accuracy	of	the	hydrological	

cycle,	as	well	as	improve	on	technical	aspects,	such	as	quality	control	and	bias	
correc;on.	

•  When:	Years	of	record	from	1989/01	to	present.	
•  Where:	Reading,	United	Kingdom	
•  Size:	~	620	GB	data	format	GRIB	

NCEP	CFSR	(Kalnay	et	al.	1996),(Saha	et	al.	2010)	•  Who:	Undertaken	by	NOAA’s	Na;onal	Centers	for	Environmental	Predic;on.	
•  What:	Primary	objec;ve	to	provide	a	global,	high	resolu;on	coupling	of	

atmosphere-ocean-land-sea	ice	systems	in	order	to	provide	the	best	es;mates	
of	state	for	the	coupled	system	over	the	given	;me	period.	

•  When:	Years	of	record	from	1979/01	–	2010/12.	
•  Where:	NCEP	Environmental	Modeling	Center,	College	Park,	MD	
•  Size:	~100	TB	data	format	GRIB	
	

CDMS Overview

UV-CDAT

Implemented as a component of the Climate Data Analysis Tools
(CDAT), the Climate Data Management System (CDMS) is used
to automatically locate and extract metadata (i.e., variables,
dimensions, grids, etc.) from the multi-model collection of model
runs and analysis files. CDMS is defined as an object-oriented
data management system, specialized for organizing
multidimensional, gridded data used in climate analysis and
simulation. As a fully Climate and Forecast (CF) compliant data
access tool, CDAT (via CDMS) allows users to seamlessly read
data from multiple sources for intercomparison studies. In
addition to reading in netCDF CF compliant data, CDAT can
also write data in this format. In addition to netCDF, CDAT can
also read in HDF, GRIB, ASCII, binary, and other popular
climate data file formats.	

What is CDMS?

numba	

Just-In-Time	(JIT)	

Thread 0	

Thread 1	

Thread 2	

Thread 3	

Com
bine results	

Mul;processing	

Write	to	
File	

netCDF4	

Parallel	I/O	

Future work

Combination of different parallelism mechanism can be used to
increase performance of CDMS. In this workflow, Numba’s
“Just-In_time”(JIT) capability is used to accelerate
mathematical computation. 	
	
The middle section found in figure to the left shows a
multiprocessing pool of workers. Tasks are dispatched in an
embarrassingly parallel manner either to perform computation,
such as regridding, or to process different sections of a big array.
This mutiprocessing code will take advantage of all cores
available on the computer. 	
	
Finally, CDMS can also take advantage of netCDF parallel I/O
to write in parallel. It is now possible to combine all these
methods and increase software performance. 	

1.  CDMS Python Application Programming Interface (API)	
•  CDMS itself is implemented in a mixture of C and Python	

	
Type	 DescripJon	

Array	 Numeric	masked	mul;dimensional	data	array.	All	elements	of	
the	array	are	of	the	same	type.		

Comp;me	 Absolute	;me	value,	a	;me	with	representa;on	(year,	month,	
day,	hour,	minute,	second).		

Dic;onary	 A	collec;on	of	objects,	indexed	by	key.	All	dic;onaries	in	CDMS	
are	indexed	by	strings,	e.g.:	axes[';me’].	

Float	 Floa;ng-point	value.	

Integer	 Integer	value.	

List	 An	ordered	sequence	of	objects,	which	need	not	be	of	the	
same	type.	New	members	can	be	inserted	or	appended.	Lists	
are	denoted	with	square	brackets,	e.g.,	[1,	2.0,	'x',	'y’].	

None	 No	value	returned.	

Rel;me	 Rela;ve	;me	value,	a	;me	with	representa;on	(value,	units	
since	base;me).	Defined	in	the	cd;me	module.	cf.	comp;me.	

Tuple	 An	ordered	sequence	of	objects.	Unlike	lists,	tuples	elements	
cannot	be	inserted	or	appended.	Tuples	are	denoted	with	
parentheses,	e.g.,	(1,	2.0,	'x',	'y’).	

2.  “cdtime” module	
•  Converting a units string, of the form ‘units since basetime’,	
a floating-point value based on the common calendars used in
climate simulation. Basic arithmetic and comparison operators
are also available.	
	

3.  Regridding Data	
•  provides several methods for interpolating gridded data	
•  from one rectangular, lat-lon grid to another (CDMS

regridder)	
•  between any two lat-lon grids (ESMF and SCRIP regridders)	
•  from one set of pressure levels to another	
•  from one vertical (lat/level) cross-section to another vertical

cross-section.	

4.  Plotting CDMS data in Python	
•  Data read via the CDMS Python interface can be plotted via a

number of plotting packages which are included in the
Ultrascale Visualization Climate Data Analysis Tools (UV-
CDAT)	

	
5.  Climate Data Markup Language (CDML)	
•  The Climate Data Markup Language (CDML) is the markup

language used to represent metadata in CDMS. CDML is
based on the W3C XML standard (http://www.w3.org). 	

Numba gives the possibility to speed up part of CDMS with high performance
functions written directly in Python. Numba works by generating optimized
machine code using the LLVM (formerly Low Level Virtual Machine) compiler
infrastructure at import time, runtime, or statically. Numba supports compilation
of Python to run on either CPU or GPU hardware, and is designed to integrate
with the Python scientific software stack.	

Pool object offers a
convenient mean of
parallelizing the
execution of a function
across multiple input
values, distributing the
input data across
processes (da ta
parallelism).	
	

Use of multprocessing (pool of workers)	
	

for i in arange(N):	
 	 serial[i] = test_prime(i)	
	

Replace with:	
test_prime.parallel = parallel_function(test_prime)	
parallel_result = test_prime.parallel(arange(N))	

CDMS using MPI is implemented as part of the Ultrascale
Visualization Climate Data Analysis Tools (UV-CDAT). CDMS can
now utilize a parallel I/O interface which allows for both single and
multi-threaded I/O, as well as “quilted” I/O. CDMS can also pass
flags to the netCDF4 library to select chunking and/or deflation
options if desired by the user. All parallel I/O commands called by
UV-CDATA are conducted by CDMS using the python module
mpi4py, which is linked to openMPI. CDMS calls a python
extension to interface with the “C” parallel netCDF4 programming
interface. Python is an excellent language for developing parallel
code. It is a great language for prototyping and for small scripts.
The python module “mpi4py” offers most functionality of C or
Fortran implementations of MPI. The main difference between
“mpi4py” and MPI in C or Fortran is that mpi4py is object oriented.
As well, using MPI functionality, CDMS can parallelize by dividing
the data and sending work to different processors. The figure above
shows how UV-CDAT can divide the data and send each tiles to
different processors to perform some computation. The number of
nodes is decided by the user depending on the resources available in
his or her cluster. 	

Benchmarking:	
Different parallelism architecture will give different computation
speed. It is important to select the algorithm that will make the
most of compute resources. Choosing an embarrassingly parallel
approach can be appropriate when many files need to be processed. 	
	
What is the best approach or architecture for parallelism in remote-
sensing? More work needs to be done to answer this question and a
very good benchmark application needs to be used. Most of the
time being lost is in disk I/O and a developer needs to be very
careful when using profilers so that the speed returned by the
benchmark is actual computation and not I/O latency. 	
	
Cython:	
Cython is already compiled with Scipy which is now part of UV-
CDAT. A good use of Cython could speed up computations.	
	
Some CDMS code is being updated to make better use of latest
Python modules such as Numpy. A lot of new interface is becoming
available and taking advantage of them can also greatly speed up
computations.	
	

CDMS	
Func;on	

Machine	
Code	

LLVM-PY	

Parallelism is being introduced to CDMS as data warehouse becomes
larger and requires new techniques for managing good query
performance along large data sets. Parallel execution does provide
the greatest performance executions, but new modules version such as
Numpy have evolved to better performance and CDMS code can take
advantage of them. The MV2 module can be replaced by Numpy
using the __array_finalize__ hook available. 	
	
In addition, CDMS can take advantage of all the grid and axis
capability and expand to create a package for data analyses. 	

CDMS	

mpi4py	 numba	

mul;processing	

numpy.ma	(hooks)	

analy;cs	

CDMS Expansion

CDMS	
Func;on	

Machine	
Code	

LLVM-PY	

ABSTRACT

